Single Sample Hypothesis Test Summary

Type of Test	(1) Gather Data & Verify Requirements	(2) Level of Signif- icance	(3) Set up H ₀ (null hypothesis) & H ₁ (alternative hypothesis)	(4) Compute the Test Statistic (T.S.)	(5) Look up the critical value (C.V.) in Table A2 Pick one According to Type of Test	(6) Look up the p-value z: Table A1 t: Table A3 Pick one According to Type of Test	(7) Make a Conclusion
Proportion p	$\hat{p} = x/n$, n . Requirements: $n \cdot p \ge 5$ $n \cdot q \ge 5$ (check in step 3)	α	$H_0: p = value$ $H_1 \text{ is one of:}$ $\begin{cases} p > value \\ p < value \\ p \neq value \end{cases}$ (choose only one)	$z = \frac{\hat{p} - p}{\sqrt{pq/n}}$	Right Tail Test $(H_1: >)$ $0 C.V. z \text{ or } t$	Right Tail Test (H ₁ : >) p-value 0 T.S.	In each case, whenever the test statistic (T.S.) lies in a tail beyond a critical value (C.V.), we
Mean μ σ known	\overline{x} , σ , n Requirement: $n > 30$ or population is normal.	α	$H_0: \mu = value$ H_1 is one of: $\begin{cases} \mu > value \\ \mu < value \\ \mu \neq value \end{cases}$ (choose only one)	$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	Left Tail Test $(H_1: <)$ $C.V. 0 zor t$	Left Tail Test (H ₁ : <) p-value T.S. 0	reject the null hypothesis in favor of the alternative (in this case a statement of support is strong).
Mean μ σ unknown	\overline{x} , s, n Requirement: $n > 30$ or population is normal.	α	H ₀ : $\mu = value$ H ₁ is one of: $\begin{cases} \mu > value \\ \mu < value \\ \mu \neq value \end{cases}$ (choose only one)	$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$	Two Tail Test $(H_1: \neq)$ $\alpha/2$ $-C.V. 0 C.V. z or t$	Two Tail Test $(H_1: \neq)$ $p\text{-value}$ $= 2 \cdot area$ $0 T.S. $	Otherwise, we fail to reject the null hypothesis (in this case a statement of support is weak).

Looking up critical values ((C.V.) i	in Table A2
------------------------------	----------	-------------

	α						
d.f.	One/Two Tail Applications						
			α				
n – 1			t C.V.				
Large(z)			z C.V.				

Computing *p*-values

1. Look up area to left of the T.S. in Table A1 or A3 For a 2-tail test, use the absolute value of the T.S.

z distribution (Tab. A1			
		$1/100^{th}$'s	
z		place	
T.S.		Area	

t distribution (Tab. A3)				
		d.f.		
t		= n - 1		
T.S.		Area		

- 2. Computing *p*-values *Continued*2. Compute the *p*-value using the area found in step 1.

 a. For a right-tail test, *p*-value = 1 area in table.

 b. For a left-tail test, *p*-value = area in table.

 - c. For a 2 tail test, p-value = $2 \cdot (1 area in table)$.