- 1. Approximate to the nearest .0001:
 - (a) $5^{\frac{2}{3}}$

(b) $\sqrt[3]{127}$

(c) ⁶√295

(d) $\sqrt[4]{-64}$

- 2. Simplify. Assume that variables can represent any real number.
 - (a) $\sqrt{25t^2}$

(c) $\sqrt{4w^2 + 28w + 49}$

(b) $\sqrt{x^{12}}$

- (d) $\sqrt{x^{14}}$
- 3. Simplify. Assume that no radicands were formed by raising negative quantities to even powers.
 - (a) $\sqrt{25t^2}$

(c) $\sqrt{4w^2 + 28w + 49}$

(b) $\sqrt{x^{12}}$

(d) $\sqrt{x^{14}}$

- 4. Determine the domain of each function:
 - (a) $f(x) = \sqrt{2x 5}$

- (b) $g(x) = \sqrt[3]{7x + 5}$
- 5. Rewrite without rational exponents and, if possible, simplify:
 - (a) $49^{\frac{3}{2}}$

(b) $64^{\frac{2}{3}}$

- (c) $27^{-\frac{4}{3}}$
- 6. Simplify. Assume no radicands were formed by raising negative quantities to even powers.
 - (a) $\sqrt{175p^9}$

- (b) $\sqrt[3]{128t^8}$
- (c) $\sqrt[3]{-27a^5b^{11}}$

(a)
$$2\sqrt{32} + 7\sqrt{18} - 5\sqrt{20}$$

(b)
$$\sqrt[3]{25y^4}\sqrt[3]{10y^6}$$

(c)
$$\sqrt[5]{a^2b^3} \sqrt[4]{a^2b}$$

(d)
$$\sqrt[4]{12a^3b^7} \sqrt[4]{4a^2b^5}$$

(e)
$$\frac{\sqrt[5]{x^4y^2}}{\sqrt[3]{x^2y}}$$

(f)
$$(x - \sqrt[4]{y^3})(3x - \sqrt[5]{y})$$

(g)
$$(\sqrt{5} - \sqrt{2r})^2$$

8. Rationalize each denominator:

(a)
$$\sqrt{\frac{3}{5w}}$$

(b)
$$\sqrt[3]{\frac{4a^2}{5c}}$$

(c)
$$\frac{\sqrt{2} + 3}{\sqrt{5} - \sqrt{2}}$$

9. Solve.

(a)
$$\sqrt{t-7} + 3 = 10$$

(b)
$$\sqrt[3]{y-2} = 3$$

(c)
$$x = \sqrt{2x+9} + 3$$

(d)
$$3 + \sqrt{x-6} = \sqrt{x+9}$$

(e)
$$\sqrt{x+4} + \sqrt{3x+1} = 7$$