Math 51 Worksheet

Rationalize the denominator and multiply with Radicals

Rationalizing is done to remove the radical from the denominator of a fraction. We will consider three cases involving square roots. It will be helpful to remember how to reduce a radical when continuing with these problems.

Note: Squaring a radical will eliminate the radical. Because $\sqrt{x} \cdot \sqrt{x} = (\sqrt{x})^2 = x \quad \Leftarrow$ this equals x

Case 1: Single radical in the denominator

•
$$\frac{2y}{\sqrt{18y^3}}$$
 \Leftarrow So we can eliminate the radical from the denominator by doubling it.

$$\circ \quad \frac{2y}{\sqrt{18y^3}} \cdot \frac{2y}{\sqrt{18y^3}} \quad \Leftarrow \text{But anything you do the bottom of a fraction you must do to the top.}$$

$$\circ \quad \frac{2y}{\sqrt{18y^3}} \cdot \frac{\sqrt{18y^3}}{\sqrt{18y^3}} \quad \Leftarrow \text{Now multiply across} \Rightarrow \quad \frac{2y\sqrt{18y^3}}{\left(\sqrt{18y^3}\right)^2} \quad \Leftarrow \text{ then simplify both top and bottom.}$$

$$\circ \quad \frac{2y\sqrt{9 \cdot 2y^2}y}{18y^3} \qquad \Leftarrow \text{ Reduce the radical on top} \Rightarrow \quad \frac{2 \cdot 3 \cdot y \cdot y\sqrt{2y}}{18y^3}$$

$$\circ \quad \frac{6y^2\sqrt{2y}}{18y^3} \qquad \qquad \Leftarrow \text{Reduce the fraction using the terms outside the radical} \Rightarrow \quad \frac{\sqrt{2y}}{3y} \text{ Done!}$$

Case 2: Entire fraction is in the radical

• $\sqrt{\frac{50x^3}{6x^4}}$ • First, reduce under the radical whenever possible. • $\sqrt{\frac{25}{3x}}$ • Then, split the radical top and bottom $\Rightarrow \frac{\sqrt{25}}{\sqrt{3x}}$ Continue as in <u>case 1</u> above.

$$\circ \quad \frac{\sqrt{25}}{\sqrt{3x}} \cdot \frac{\sqrt{3x}}{\sqrt{3x}} \quad \Rightarrow \quad \frac{\sqrt{75x}}{\sqrt{9x^2}} \quad \Leftarrow \text{ Simplify the radicals} \Rightarrow \quad \frac{5\sqrt{3x}}{3x} \quad \text{Done!}$$

Rationalizing two terms in the denominator requires the conjugate.

Definition: Conjugates are the same two terms separated by different signs.

For instance: $\sqrt{5} - \sqrt{11}$ and $\sqrt{5} + \sqrt{11}$ are conjugates of each other.

Example: Rationalize the denominator

$$\circ \qquad \frac{5}{\sqrt{2}-\sqrt{3}} \implies \text{The conjugate of } \sqrt{2}-\sqrt{3} \text{ is } \sqrt{2}+\sqrt{3} \text{ so } \implies \frac{5}{\sqrt{2}-\sqrt{3}} \cdot \frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}} \iff \text{Multiply}$$

$$\circ \quad \frac{5(\sqrt{2}+\sqrt{3})}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})} \Rightarrow \text{FOIL the denominator} \Rightarrow \quad \frac{5(\sqrt{2}+\sqrt{3})}{\sqrt{2}\sqrt{2}+\sqrt{2}\sqrt{3}-\sqrt{2}\sqrt{3}-\sqrt{3}\sqrt{3}}$$

$$\circ \quad \frac{5\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{4}+\sqrt{6}-\sqrt{6}-\sqrt{9}} \quad \Rightarrow \frac{5\left(\sqrt{2}+\sqrt{3}\right)}{2-3} \quad \Rightarrow \frac{5\left(\sqrt{2}+\sqrt{3}\right)}{-1}$$

 \circ Reduce bringing the minus sign to the numberator $\Rightarrow -5(\sqrt{2}+\sqrt{3})$ Done \odot

Multiply and FOIL with radicals.

Example 1: Distribution with a single term

•
$$\sqrt{5y}(\sqrt{5} - \sqrt{y}) \leftarrow \text{Use distribution} \Rightarrow \sqrt{5y} \cdot \sqrt{5} - \sqrt{5y} \cdot \sqrt{y}$$

Rules for radicals $\Rightarrow \sqrt{5y} \cdot \sqrt{5} = \sqrt{25y}$ and $\sqrt{5y} \cdot \sqrt{y} = \sqrt{5y^2}$
• $\sqrt{25y} - \sqrt{5y^2} \leftarrow \text{Simplify the radicals} \Rightarrow 5\sqrt{y} - y\sqrt{5}$ Done!

Example 2: FOIL multiply two terms with two terms

•
$$(\sqrt{2x} - \sqrt{3y})(\sqrt{x} - \sqrt{3y}) \Rightarrow \sqrt{2x}\sqrt{x} - \sqrt{2x}\sqrt{3y} - \sqrt{3y}\sqrt{x} + \sqrt{3y}\sqrt{3y}$$

•
$$\sqrt{2x^2} - \sqrt{6xy} - \sqrt{3xy} + \sqrt{9y^2}$$
 Answer $x\sqrt{2} - \sqrt{6xy} - \sqrt{3xy} + 3y$

Example 3: Two terms squared; double then FOIL

•
$$(3 - \sqrt{w})^2 \Rightarrow (3 - \sqrt{w})(3 - \sqrt{w}) \iff$$
 Must write two terms then FOIL

First Outer Inner Last

- $9-6\sqrt{w}+w$ Finished because none of the terms are like terms.

Practice Problems

Rationalize and multiply the radicals.

1)
$$\sqrt{\frac{24x^3}{8y}}$$

2) $\frac{\sqrt{27}}{\sqrt{6}}$
3) $\frac{\sqrt{3}}{\sqrt{2y}}$
4) $\frac{2}{\sqrt{6}-3}$
5) $\frac{\sqrt{5}+2}{2-\sqrt{3}}$
6) $\sqrt{\frac{4}{x}}$
7) $\sqrt{7}(8+\sqrt{12})$
8) $(\sqrt{6}-\sqrt{3})(\sqrt{3}+\sqrt{18})$

9) $(\sqrt{3}-5)(\sqrt{3}+5)$ 10) $(\sqrt{2x}-7)^2$

Answer Key

1) $\frac{x\sqrt{3xy}}{y}$ 3) $\frac{\sqrt{6y}}{2y}$ 5) $2\sqrt{5} + \sqrt{15} + 4 + 2\sqrt{3}$ 7) $8\sqrt{7} + 2\sqrt{21}$ 8) $6\sqrt{3} + 3\sqrt{2} - 3 - 3\sqrt{6}$ 9) -2210) $2x - 14\sqrt{2x} + 49$