Introduction to Radicals

Radicals will be: evaluated, simplified, added, subtracted, multiplied and divided.

> Square root or radical notation \Rightarrow index Radicand

What number multiplied by itself gives the number under the radical?

- Perfect square numbers evaluate to rational numbers
 - $\sqrt{25} = 5$ Because $5 \cdot 5 = 25$
- Other numbers require the use of a calculator and evaluate to irrational number $\sqrt{13} = 3.605551275...$
- Can you take the square root of a negative number? Why?
 ☆ √-16 = ??? Does (-4)(-4) = -16 No. So, the answer is not a real number.

Square roots have an index of 2 other radicals are possible index 3, 4, 5 and so on. But the definition is the same.

*
$$\sqrt[3]{125} = 5$$
 Because, $5 \cdot 5 \cdot 5 = 125$ or $\sqrt[4]{81} = 3$ Because, $3 \cdot 3 \cdot 3 \cdot 3 = 81$ and so on

Simplifying radicals

What is the square root of a variable raised to a power? $\sqrt{x^6} = x^3$ Why? Because $x^3 \cdot x^3 = x^6$

Another way to think about it is divide the power by the index. $\sqrt{x^6} = x^{\frac{6}{2}} = x^3$ If the power does not divide evenly then the variable must be factored first so that the power can be divided by the index.

Example: $\sqrt[4]{x^{14}} = x^{\frac{14}{4}}$ The power does not reduce to a whole number. So, factor the part that does:

$$\sqrt[4]{x^{12}x^2} \Rightarrow x^{\frac{12}{4}}\sqrt[4]{x^2} \Rightarrow x^{3}\sqrt[4]{x^2} \iff \text{The remainder stays inside the radical.}$$

Next Example: Simplify

•
$$\sqrt{108x^5y^8}$$
 Problem? 108 is not a perfect square but one of its factors maybe.

- $\sqrt{(36)(3)x^5y^8}$ What about x^5 5 divide 2 does not work, so that must be factored as well.
- $\sqrt{(36)(3)x^4xy^8}$ Everything that can be simplified comes out of the radical and everything else must stay inside.

The same rules apply to all other radicals just the index changes.

Example:
$$\sqrt[3]{135x^7y^{15}} \Rightarrow \sqrt[3]{(27)(5)x^6xy^{15}} \Rightarrow 3x^{\frac{6}{3}}y^{\frac{15}{3}}\sqrt[3]{5x}$$
 Reduce all terms.
Answer: $3x^2y^5\sqrt[3]{5x}$

<u>Multiply/Divide radicals</u>: If the indexes are the same write as one radical.

Multiply

- $\sqrt[4]{2x^3y} \cdot \sqrt[4]{8x^5y^2}$ \leftarrow The indexes are the same "4". So, write as one radical first.
- $\sqrt[4]{2x^3y \cdot 8x^5y^2}$ \Leftarrow Everything inside will multiply. Note: Remember your power rules.
- $\sqrt[4]{2 \cdot 8x^3 x^5 y y^2} \implies \sqrt[4]{16x^8 y^3} \implies \text{Reduce} \implies 2x^2 \sqrt[4]{y^3}$

Example: $2\sqrt[3]{27x}$ is read as 2 times $\sqrt[3]{27x}$ When the radical is reduced whatever comes out of the radical is multiplied by what is already out front.

• $2\sqrt[3]{27x} \Rightarrow 2\cdot 3\sqrt[3]{x} \Rightarrow 6\sqrt[3]{x}$ Done!

Example: Multiply

Divide

•
$$\frac{\sqrt[3]{162x^7y^{10}}}{\sqrt[3]{6x^4y}}$$

• $\sqrt[3]{\frac{162x^7y^{10}}{6x^4y}}$
• $\sqrt[3]{\frac{162x^7y^{10}}{6x^4y}}$
• Reduce $\Rightarrow \sqrt[3]{27x^3y^9} \Rightarrow \text{Simplify} \Rightarrow 3xy^3$

Adding/Subtracting radicals: The same as like terms. If all the terms match then combine the number out front.

Example:
$$8\sqrt{11x} + 5\sqrt{11x} - 7\sqrt{11x} \implies (8+5-7)\sqrt{11x} \implies 6\sqrt{11x}$$

Some radicals may need to be reduced first before they are added.

Example:

- $5x^2\sqrt{3x} + 4\sqrt{12x^5} 2x\sqrt{27x^3}$ • $5x^2\sqrt{3x} + 4\sqrt{4 \cdot 3x^4x} - 2x\sqrt{9 \cdot 3x^2x}$ • $5x^2\sqrt{3x} + 4\sqrt{4 \cdot 2x^2}\sqrt{3x} - 2 \cdot 3x \cdot x\sqrt{3x}$ • $5x^2\sqrt{3x} + 4 \cdot 2x^2\sqrt{3x} - 2 \cdot 3x \cdot x\sqrt{3x}$ • Multiply terms out front
- $5x^2\sqrt{3x} + 8x^2\sqrt{3x} 6x^2\sqrt{3x} \iff \text{Add like radicals} \implies 7x^2\sqrt{3x}$ Done!

Practice Problems Perform the indicated operation and reduce all radicals.

1) $\sqrt{128x^3}$	2) $\sqrt{243m^5n^2}$
3) $\sqrt{27a^2}$	$4) \sqrt{2} \cdot \sqrt{8}$
5) $-7\sqrt[3]{3y^2} \cdot \sqrt[3]{18y}$	6) $\sqrt[3]{25p} \cdot \sqrt[3]{125p^3}$
7) $\sqrt{\frac{4x^2}{25y^4}}$	8) $\frac{\sqrt{48x^3y^7}}{\sqrt{3xy^3}}$
9) $\sqrt[4]{8m^7} \cdot \sqrt[4]{6m^3}$	10) $5\sqrt{7} - 4\sqrt{7} + 2\sqrt{7}$
11) $3x\sqrt{7} + \sqrt{28x^2} - \sqrt{63x^2}$	12) $\sqrt{50} + \sqrt{98} - \sqrt{75} + \sqrt{27}$

1)	$8x\sqrt{2x}$	2)	$9m^2n\sqrt{3m}$
3)	$3a\sqrt{3}$	4)	4
5)	$-21y\sqrt[3]{2}$	6)	$5p\sqrt[3]{25p}$
7)	$\frac{2x}{5y^2}$	8)	$4xy^2$
9)	$2m^2\sqrt[4]{3m^2}$	10)	$3\sqrt{7}$
11)	$2x\sqrt{7}$	12)	$12\sqrt{2}-2\sqrt{3}$

Answer Key