Factoring Trinomials

Foiling and AC Method

Factor by FOILing

We first look for three terms. Make sure the term with the power does not have a number in front.

Check this example $\rightarrow x^2 - 4x - 21$ The x^2 term does not have a number in front.

Background: Multiply the two Binomials using FOIL method.

 $(x+3)(x-7) \Rightarrow x^2 - 7x + 3x - 21 \Leftrightarrow add like terms \Rightarrow x^2 - 4x - 21 \leftrightarrow a trinomial$

*** Remember -7x+3x are called the middle terms ***

3terms Factoring three terms by **FOILING**

Work the problem in reverse. Factor a trinomial into two Binomials.

 $x^2 - 4x - 21 \Rightarrow$ Find two numbers that multiply to -21 and combine to -4

The result -7 and +3, Check: (-7)(3) = -21 and -7 + 3 = -4

 $x^2 - 4x - 21$ Begin by splitting the variable into two binomials $\rightarrow (x)(x)$ Now fill in the -7 and +3 $\rightarrow (x - 7)(x + 3)$ Note: order does not matter (x + 3)(x - 7) would be correct.

What if the x^2 has a number in front like $4x^2$?

AC Method

Since all quadratic expressions have the form $Ax^2 + Bx + C$ the **AC** is the product of the first and last number

Example: Factor $4x^2 - 19x - 30 \Rightarrow$ The product of **AC** is (4)(-30) = -120

If AC is a negative number then we look for a difference.

If AC is a positive number then we look for a sum.

Now list all possible pairs of factors of -120 starting in order from low to high we get the following list.

(You do not have to list all the factors. Usually stop when you find the correct pair)

1	120	
2	60	
3	40	
4	30	
5	24	Difference is 19
6	20	
8	15	
10	12	Stop when the first column repeats

If the difference is not on the list then the expression is called prime.

Back to the example: Factor $4x^2 - 19x - 30$

The 5 and 24 needs to combine to - 19x so we put in the sign and the variable

+5x - 24x = -19x Now we replace -19x with the two terms in the middle of the expression.

 $4x^2 + 5x - 24x - 30$ Factor by grouping

x(4x+5) - 6(4x+5) Factor out the matching factors

(4x + 5)(x - 6) Done

Note: If -19x was replaced by -24x + 5x = -19x the answer would have been the same.

Practice Problems

1) $x^2 + 8x + 15$	2) $x^2 - 17x + 30$	3) $x^2 - 6x - 27$
4) $x^2 + 5x - 14$	5) x ² - 11x - 42	6) $6x^2 + x - 12$
7) $10x^2 + 33x - 7$	8) 10x ² - 3x - 1	9) $3x^2 + 11x - 4$

Answer key

1)	(x + 3)(x + 5)	2)	(x - 15)(x - 2)	3)	(x - 9)(x + 3)
4)	(x - 2)(x + 7)	5)	(x + 3)(x - 14)	6)	(2x + 3)(3x - 4)
7)	(5x - 1)(2x + 7)	8)	(5x + 1)(2x - 1)	9)	(3x + 1)(x - 4)