Graphing Functions

The following functions can all be graphed by plotting points from a table; however, the techniques of translations can make graphing much easier. First, let's look at four basic graphs:

Horizontal Shifts

We recognize horizontal shifts by examining the "inside" what identifies each function type. *Note* The sign "inside" is opposite the direction we move the graph- that is, a minus sign moves the graph right, and a plus sign moves it left. Also note that any vertical asymptotes will move as well (as in logarithms, etc)

Vertical Shifts

For all these functions, a vertical shift takes place when there is a constant added to or subtracted from the function. For vertical shifts, any horizontal asymptotes will

Graphing Functions

Combining these techniques

Often, our graphs are combinations of these, with horizontal and vertical translations. As an example, lets look at $y = 2(x-1)^2 - 4$. We start with the original graph, and add on one change at a time. The order does not matter; the result should be the same.

