Summary of angle and arc relations on a circle

Vertex on the center, sides are radii angle measure equals measure of intercepted arc

$$
\mathrm{m} \angle 1=\mathrm{m} \overparen{\mathrm{AB}}
$$

Vertex on the circle, sides are chords or a chord and a tangent - angle measure equals half the measure of the intercepted arc

$$
\begin{aligned}
& \mathrm{m} \angle 2=1 / 2 \mathrm{~m} \overparen{\mathrm{AB}} \\
& \mathrm{~m} \angle \mathrm{ABC}=1 / 2 \mathrm{~m} \widehat{A B}
\end{aligned}
$$

> Vertex outside circle, sides formed by two secants or secant and tangent or two tangents - angle measure is half the difference of the intercepted arcs
> $\mathrm{m} \angle \mathrm{GEH}=1 / 2(\mathrm{mGH}-\overparen{\mathrm{mFl}})$
> $\mathrm{m} \angle \mathrm{DEG}=1 / 2(\mathrm{mDG}-\overparen{\mathrm{mDF}})$
> $\mathrm{m} \angle \mathrm{DEJ}=1 / 2(\mathrm{mDGJ}-\mathrm{mDFJ})$

Vertex inside the circle, sides are intersecting chords - angle measure is half the sum of the measures of the intercepled arc and the arc intercepted by its vertical angle
$\mathrm{m} \angle 3=1 / 2(\mathrm{~m} \widehat{\mathrm{MN}}+\mathrm{mKL})$

Summary of Segment Relations on a Circle

Think of the two segments that you will be multiplying as the segment starting with the point of intersection and ending with a point on the circle. If there is only one point of intersection use the segment twice.

Intersection inside circle, (two intersecting chords)
$\mathrm{ST} \cdot \mathrm{SQ}=\mathrm{SP} \cdot \mathrm{SR}$
Intersection outside circle, (two secants or secant and tangent)
$T X \cdot T W=T Y \cdot T V$
$\mathrm{TX} \cdot \mathrm{TW}=\mathrm{TU} \cdot \mathrm{TU}=\mathrm{TU}^{2}$

For two tangent segments there is no need to do a product. Tangent segments from the same point are equal.
$T U=T Z$

