

1. Geometric:

$$\sum_{n=1}^{\infty} ar^{n-1} \text{ or } \sum_{n=0}^{\infty} ar^{n}, \text{ converges to } \frac{a}{1-r} \text{ if } |r| < 1.$$

2. Harmonic:

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges;

Useful when using the Comparison or Limit Comparison Tests.

3. P-Series:

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$$
 converges if $p > 1$, diverges if $p \le 1$.

4. Test for Divergence:

If
$$\lim_{n\to\infty} a_n \neq 0$$
 or $\lim_{n\to\infty} a_n$ does not exist, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

5. The Comparison Test:

If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are series with the positive terms and $a_n \le b_n$ then,

if
$$\sum_{n=1}^{\infty} a_n$$
 diverges then $\sum_{n=1}^{\infty} b_n$ diverges,

if
$$\sum_{n=1}^{\infty} b_n$$
 converges then $\sum_{n=1}^{\infty} a_n$ converges.

Useful if the series has a form similar to the geometric or p-series.

6. The Limit Comparison Test:

If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are series with the positive terms and $\lim_{n\to\infty} \frac{a_n}{b_n} = c$,

where c is a finite number and c > 0, then either both series converge or both diverge.

Useful if the series has a form similar to the geometric or p-series.

7. Alternating Series Test:

If
$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$
 where $b_{n+1} \le b_n$ for all n and $\lim_{n \to \infty} b_n = 0$, then the series is convergent.

8.
$$\sum_{n=1}^{\infty} a_n$$
 is **Absolutely Convergent** provided $\sum_{n=1}^{\infty} |a_n|$ is convergent.

9.
$$\sum_{n=1}^{\infty} a_n$$
 is Conditionally Convergent if it converges, but not absolutely.

10. The Ratio Test:

If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$
, then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $L < 1$, diverges if $L > 1$, if $L = 1$ the test is inconclusive.

Useful if a_n has factorial terms or nth powers of constants

11. The Root Test:

If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$$
, then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $L < 1$, diverges if $L > 1$, if $L = 1$ the test is inconclusive.

Useful for terms of the form $(a_n)^n$

12. Integral Test:

If f is continuous, positive, decreasing and $a_n = f(n)$ then,

if
$$\int_{1}^{\infty} f(x) dx$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges,

if
$$\int_{1}^{\infty} f(x) dx$$
 diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Useful if $\int_{0}^{\infty} f(x) dx$ is easily evaluated.