CSCI 230 OUTLINE

DATA STRUCTURES II

TEXT: A Practical Introcution to Data Structures and Algorithm Analysis By: Clifford Shaffer, 3rd ED, Dover

Approved: OCTOBER 2012	Effective: SPRING 2013	
MATERIAL TO BE COVERED	SECTIONS FROM TEXT	TIME LINE
Internal Sorting: O(n ²) sorting algorithms (insertion, bubble, and selection), shell sort, O(nlogn) sorting algorithms (quick sort, merge sort, and heap sort), special sorting algorithms (bin sort and radix sort), empirical comparison of sorting algorithms, lower bound for sorting	71-79	
File processing and external sorting: primary vs. secondary storage, disk drive architecture and dist access costs, buffers and buffer pools, programmer's view of files, external sort, replacement selection, multiway merging	8.1 - 8.5	5 Hours
Searching unsorted ans sorted arrays: self-organizing lists, searching in sets, hashing, hash functions, open hashing, closed hashing	9.1 - 9.4	5 Hours
Indexing: linear indexing, ISAM, tree indexing, 2-3 trees, B-trees, B ⁺ -trees, B-tree analysis	10.1 - 10.5	4 Hours
Graphs: terminology, applications, representations (adjacency matrix and adjecency list), graph implementations, graph traversals (depth first search and breadth first search), topoligical sort, shortest path problems, single-source shortest paths (Dijkstra's algorithm), minimum-cost spanning trees, Prim's algorithm, Kruskal's algorithm	11.1 - 11.5	9 Hours
Lists and arrays: multi-lists, matrix representations, memory management-dynamic storage alloation, failure policies, and garbage collection	12.1 - 12.3	2.5 Hours
Analysis techniques: summation techniques, recurrenece relations, estimating upper and lower bounds, expanding recurrences, divide and conquer recurrences, amortized analysis	14.1 - 14.3	2.5 Hours
Lower bounds, pattern of algorithms: dynamic programming (knapsack, Floyd), radomized algorithms (skip lists), numerical algorithms, limits to computation: reductions, hard problem, NP-completeness, impossible problems	15.1 - 15.7 & 16.1 - 16.3 & 17.1 - 17.3	4 Hours

* Denotes recommended book

*** 1 Hours = 1 hour of face time. ****This outline allows for 3 hours review and exams.

16 Week Term: 1 week = 2.8333 hours (face time) 6 Week Term: 1 week = 7.5 hours (face time)

Submitted by: Pop